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Abstract
We develop two new approximations for the generalized Bessel function that
frequently arises in the analytical treatment of strong-field processes, especially
in non-perturbative multiphoton ionization theories. Both these new forms
are applicable to the tunnelling environment in atomic ionization, and are
analytically much simpler than the currently used low-frequency asymptotic
approximation for the generalized Bessel function. The second of the new
forms is an approximation to the first, and it is the second new form that
exhibits the well-known tunnelling exponential.

PACS numbers: 02.30.Gp, 02.60.Gf, 32.80.Rm, 42.50.Hz

1. Introduction

The generalized Bessel function appears in problems involving physical systems subjected to
intense plane-wave electromagnetic fields. It occurs when the Volkov [1] (or Gordon [2]–
Volkov) solution is employed in an analytical approximation. Applications can be as diverse
as relativistic elementary particle problems, where the generalized Bessel function was first
encountered and defined [3]; or problems in strong-field atomic ionization, where it is currently
widely employed. An extensive listing of the properties of the generalized Bessel function
can be found in the appendices of [4], and in appendix J of [5].

Currently, the most common type of problem in which the generalized Bessel function
appears is in application of the SFA [4] (strong-field approximation) to laser–atom interaction
physics with linearly polarized laser fields. This application most often relates to the tunnelling
regime, since the field intensity may be quite high, but the energy of a single photon of the laser
is generally much less than the ionization potential of the atom. The tunnelling environment
involves a combination of high-order processes and strong fields. We seek here to develop an
approximation specifically for the tunnelling regime that is much simpler than the algebraically
cumbersome asymptotic form developed in appendix D of [4]. That earlier result, referred to
hereafter as the ‘asymptotic approximation’, is reproduced in the appendix at the end of this
paper.
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The generalized Bessel function is defined either by the integral form

Jn(u, v) = 1

2π

∫ π

−π

dϕ exp[i(u sin ϕ + v sin 2ϕ − nϕ)] (1)

or by the equivalent series representation

Jn(u, v) =
∞∑

k=−∞
Jn−2k(u)Jk(v). (2)

Here Jk(v) is the usual Bessel function. We consider only integer values of the order n, and
real values of the arguments u, v.

For the current laboratory environment of strong-field multiphoton atomic ionization
by low-frequency fields, the generalized Bessel function can be extremely difficult to
compute in its completely stated form. A low-frequency approximation is eminently useful.
The asymptotic approximation is found from a saddle-point analysis of the integral form
(equation (1)). The purpose of the present work is to give an alternative form found from a
physically motivated approach. The tunnelling approximation we find has a straightforward
analytical expression, but it is not quite in the familiar tunnelling form since it does not
transparently exhibit the characteristic tunnelling exponential exp(−C/F), where C depends
on the parameters of the problem, and F is the magnitude of the electric field. At a second
level of approximation, we do indeed find the familiar tunnelling exponential.

2. Tunnelling conditions

In multiphoton ionization, the electromagnetic field must supply both the zero-field binding
energy of the atom, given by the positive quantity EB, and the ponderomotive energy Up

required for the ionized electron to possess at least the oscillation energy of a free electron in
the field. The threshold photon order is the smallest integer n0 such that

n0ω � EB + Up (3)

where ω is the frequency of the laser field, and atomic units are used. By hypothesis, the field
is of low frequency, and so the photon order, n � n0, must be large:

ω � EB n � 1. (4)

To achieve ionization at a large multiphoton order, the field must be intense in the sense that

z ≡ Up/ω � 1. (5)

The tunnelling conditions, equations (3)–(5), are sufficient to place constraints on the
parameters n, u, v that define the generalized Bessel function Jn(u, v). As they occur in
the SFA, we have

u = (z/ω)1/22p cos θ (6)

v = −z/2. (7)

The properties of the v variable are completely straightforward from equations (5) and (7):

v < 0 |v| � 1. (8)

The momentum p within the SFA is, from energy conservation conditions,

p =
√

2ω(n − z − εB) =
√

2ω(n − n0) (9)

εB ≡ EB/ω. (10)
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We can take cos θ = 1 in equation (6). Tunnelling occurs with low velocity of the ionized
electron, so n ≈ n0. If we take n − n0 � 10, then p �

√
20ω. This gives u � 2

√
20z. The

result is that u can be quite large, since z is large. On the other hand, we have to consider that
it is possible to have p = 0, or to have cos θ = 0, so that

0 � umin umax � 1. (11)

To find more definitive constraints on u, we can compare it with v. We have a limit on u that
depends only on z, so we can compare u directly with |v|, giving the result

u

|v| � 2
√

20z

z/2
≈ 20

z1/2
� 1. (12)

To summarize, the n, u, v parameters of Jn(u, v) in the tunnelling regime are subject to the
limits

n � 1 |v| � 1, v < 0 0 � u � |v|. (13)

3. Tunnelling approximation for Jn(u, v)

The above results make it possible to start with the integral representation of equation (1), and
do a steepest-descent approximation with the saddle-point locations determined by the n and
v parameters in the exponent. The part of the exponent dependent on u can then be evaluated
at the saddle points determined by n and u. The integral representation in equation (1) can
thus be written as

Jn(u, v) = 1

2π

∫ ∞

−∞
dθ exp(iu sin θ) ezg(θ) (14)

g(θ) = i

(
v

z
sin 2θ − n

z
θ

)
(15)

where z is the large parameter needed for the steepest-descent approximation, and the saddle
points are determined by dg/dθ = 0. When we insert v = −z/2 and define α ≡ n/z, then

g(θ) = −i
(

1
2 sin 2θ + αθ

)
(16)

and the saddle-point locations θ0 are where g′(θ) = −i(cos 2θ + α) = 0, or

cos 2θ0 = −α. (17)

We know from equation (3) that n > z, so α > 1 and the saddle points must be off the real
axis. If we set θ0 = x + iy, then

sin 2x sinh 2y = 0 (18)

cos 2x cosh 2y = −α. (19)

Equation (18) gives sin 2x = 0 since y �= 0. Equation (19) requires that cos 2x < 0, so we
know the saddle points must be at

x = ±π

2
y = 1

2
cosh−1 α. (20)

This gives four saddle points, but we know that at those saddle points through which we can
pass a path of steepest descent, we must have g′′(θ) < 0. We have

g′′(θ0) = i2 sin 2θ0 (21)
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-π +π-π/2 π/2

Figure 1. The deformed path of integration in the complex θ plane needed to evaluate Jn(u, v)

by the method of steepest descent is shown by the arrows. With θ separated into real and
imaginary parts in terms of θ = θr + iθi (θr , θi real), the amplitude of exp[g(θ)], as defined in
equations (14) and (15), goes to zero exponentially in the lower half-plane (θi < 0) in the intervals
−π < θr < −3π/4,−π/4 < θr < π/4 and 3π/4 < θr < π . This explains the shape of the path
shown between the original end points of the integral at (−π, π), and the path deformed to pass
through the saddle points in the lower half-plane shown by the solid circles.

sin 2θ0 = sin 2x cosh 2y + i cos 2x sinh 2y = −i sinh 2y (22)

g′′(θ0) = 2 sinh 2y. (23)

Since g′′(θ) < 0 along the deformed path we follow, this means that the necessary saddle
points are the two that are in the lower half of the complex plane at

x = ±π

2
y = −1

2
| cosh−1 α|. (24)

Figure 1 shows how the original real-axis path of integration is deformed in the complex θ

plane to pass through the two saddle points in the lower half-plane, such that only that part of
the path near the saddle points contributes to the result. This gives

sinh 2y = −
√

α2 − 1 (25)

g′′(θ0) = −2
√

α2 − 1 (26)

g(θ0) = −i

(
1

2
sin 2θ0 + αθ0

)
= −i

(
− i

2
sinh 2y ± π

2
α − i

α

2
| cosh−1 α|

)
(27)

= 1

2

√
α2 − 1 − α

2
| cosh−1 α| ∓ i

π

2
α. (28)

We must also consider the multiplier exp(iu sin θ0):

sin θ0 = sin x cosh

(
−1

2
| cosh−1 α|

)
(29)

= ±
√

1

2
(1 + cosh(cosh−1 α)) (30)

= ±
√

1 + α

2
(31)

exp(iu sin θ0) = exp(±iu
√

(1 + α)/2). (32)
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We can now write the result for Jn(u, v):

Jn(u, v) = exp
(

z
2

√
α2 − 1 − zα

2 | cosh−1 α|)√
4πz

√
α2 − 1

[
exp

(
iu

√
(1 + α)/2 − iπzα/2

)
+ exp

(−iu
√

(1 + α)/2 + iπzα/2
)]

. (33)

This can be simplified using zα = n and combining the last square bracket into a cosine
function, to get

Jn(u, v) = exp
(

1
2

√
n2 − z2 − n

2

∣∣ cosh−1 n
z

∣∣)
√

π(n2 − z2)1/4
cos

(
u

√
n + z

2z
− nπ

2

)
. (34)

Equation (34) is the primary result of this paper. This form will be referred to as ‘tunnelling 1’,
since a second tunnelling approximation will be developed below.

Note the very simple dependence in equation (34) on the u parameter. However,
equation (34) also shows that if n is varied with z held constant, or vice versa, the cosine
function does not have simple periodicity. It is also easy to show that the maximum value of
the argument of the exponential is zero, achieved when z = n. For all smaller values of z,
the argument of the exponential is negative. Since, in physical application, z < n always, this
means that the exponential always provides damping.

4. Second tunnelling approximation

Although equation (34) has an explicit analytical form far simpler and more transparent than
the asymptotic approximation in the appendix, it does not display the characteristic tunnelling
exponential exp(−C/F), where F is the amplitude of the electric field. This result has been
known [6] since the early days of quantum mechanics. We shall now do a further approximation
that leads to the familiar form.

We work with the parameter α, defined earlier as

α ≡ n/z (35)

and then set α = 1 + η. The quantity η is small in the tunnelling domain, since we can rewrite
α as

α = n

z
= 1 + η = (n − n0) + z + εB

z (36)
= 1 +

n − n0

z
+

εB

z
.

The quantity (n−n0)/z is small by the tunnelling hypothesis that the ionized electron emerges
with very low kinetic energy. The last term in equation (36) can be written as

εB

z
= EB/ω

Up/ω
= EB

Up
� 1. (37)

The inequality (37) is a separate strong-field approximation that appeared in [4] as the intensity
parameter z1 ≡ 2Up/EB. When z1 � 1, the effect of the laser field on the ionized electron is
much greater than the effect of the Coulomb binding potential. This quantity appeared even
earlier as the Keldysh parameter [7]

κ ≡ √
EB/2Up = 1

/
z

1/2
1 . (38)

Keldysh showed that this parameter must be small for tunnelling to occur. The last two terms
in equation (36) are both small in a tunnelling situation, which means that we can regard the
parameter η as a small parameter.
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To express the argument of the exponential function in equation (34) in terms of η, we
have

1

2

√
n2 − z2 − n

2

∣∣∣∣cosh−1 n

z

∣∣∣∣ = n

2

[(
1

1 + η

) √
η(2 + η) − cosh−1(1 + η)

]
. (39)

Expansion in powers of η gives(
1

1 + η

)√
η(2 + η) ≈

√
2η

(
1 − 3

4
η + · · ·

)
(40)

cosh−1(1 + η) ≈
√

2η

(
1 − 1

12
η + · · ·

)
(41)

for a final result

exp

(
1

2

√
n2 − z2 − n

2

∣∣∣∣cosh−1 n

z

∣∣∣∣
)

≈ exp
(
−n

3

√
2η3

)
. (42)

The denominator in equation (34) reduces to

√
π(n2 − z2)1/4 = √

πn

(
1 − 1

α2

)1/4

= √
πn

[
η(2 + η)

(1 + η)2

]1/4

≈ √
πn(2η)1/4

(
1 − 3

8
η1/2 + · · ·

)
≈

√
πn

√
2η. (43)

Within the argument of the cosine function in equation (34), we can make the reduction√
n + z

2z
=

√
2 + η

2
≈ 1 +

1

4
η. (44)

When the approximations in equations (40)–(44) are incorporated into equation (34), the
result is

Jn(u, v) ≈ 1√
πn(2η)1/4

exp
(
−n

3

√
2η3

)
cos

[
u

(
1 +

1

4
η

)
− nπ

2

]
. (45)

Within the cosine function, it is necessary to retain the first correction in η. Despite the fact
that we have taken u � |v| in equation (13), u can nevertheless be large, and the product
uη makes an important contribution to the phase of the trigonometric function. We also see
that the term nπ/2 in the argument of the cosine generally leads to substantial differences
between consecutive orders n, even when other parameters remain fixed. Some simplification
of equation (45) can be obtained by the substitution

γ 2 ≡ 1
2η (46)

leading to the alternative form

Jn(u, v) ≈ 1√
2πnγ

exp

(
−4nγ 3

3

)
cos

[
u

(
1 +

1

2
γ 2

)
− nπ

2

]
. (47)

Equation (45) or (47) is somewhat simpler than equation (34), although an additional
approximation had to be introduced. This new form will be referred to as ‘tunnelling 2’ to
distinguish it from ‘tunnelling 1’ of equation (34). We can see in equation (47), a hint of the
famous tunnelling exponential first found by Oppenheimer [6] for time-independent electric
fields. However, equation (47) retains a reference to photon order n, and that is certainly not
a feature of tunnelling behaviour.
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5. Tunnelling exponential

As remarked above, equations (45) and (47) contain the photon order parameter n, a concept
alien to tunnelling theories. The photon order also appears in the trigonometric function,
meaning that positive and negative values of Jn(u, v) are about equally likely. This in itself is
not a drawback, since transition rates will always involve [Jn(u, v)]2, so the alternation of sign
is not critical in exhibiting tunnelling behaviour. The essential behaviour is in the exponential.

Equations (36) and (46) give the connection

γ =
√

n − z

2z
. (48)

In a tunnelling problem, we can set

n ≈ n0 = z + εB ≈ z. (49)

This approximation of simply substituting z for n suffices for all appearances of n in
equation (47) except in the combination n − z that appears in equation (48). There we
must use the more accurate form n − z = εB. With these replacements, the argument of the
exponential in equation (47) is

4nγ 3

3
≈ 1

3

√
2ε3

B

3
. (50)

As a final step, we need to double equation (50) to give the exponential associated with
[Jn(u, v)]2 when speaking of transition rates rather than transition amplitudes; and we also
introduce the definitions of z and εB from equations (5) and (10). That is, we substitute
z = Up/ω = F 2/4ω3 and εB ≡ EB/ω. This gives the final result for the exponential
appearing in the tunnelling rate as

exp

(
−8nγ 3

3

)
≈ exp

[
−2

3

(2EB)3/2

F

]
. (51)

This has the requisite exp(−C/F) tunnelling form. It is identical to the tunnelling exponential
in equation (81) of [4].

6. Evaluation of the results

To have an overview of the general nature of the generalized Bessel function, figure 2 gives
examples for n = 20 in part (a), and n = 40 in part (b). The tunnelling regime is in the left
foreground of these figures, where |v| � n/2, and where u � |v|. A comparison of figure 2(a)
with 2(b) shows how Jn(u, v) changes with increasing order. The oscillations along the line
|v| = n/2 increase in number, but decrease in their extension into the domain where |v| is less
than n/2. Also, the ‘null’ region where Jn(u, v) is approximately zero becomes increasingly
extensive with increasing order n. Even more complex features emerge at yet higher orders.

We now show how the tunnelling approximation compares with exact results. Three-
dimensional figures become very difficult to decipher, so results are presented for a fixed value
of the order n, as in figure 2, but also with a fixed intensity z, corresponding to a fixed value of v.
In turn, a value of |v| slightly less than n/2 is employed to place the results in the ‘active‘
tunnelling region seen in figure 2.

Figure 3 shows how the tunnelling approximation of equation (34) (tunnelling 1) compares
with an exact evaluation of Jn(u, v) when n = 20 and v has the fixed value v = −9, close to
the maximum |v| = 10. Although nominally the tunnelling approximation should be confined
to u � |v|, it is seen that the tunnelling approximation gives a reasonable prediction for the
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n = 20

n = 40

(a)

(b)

Figure 2. Behaviour of Jn(u, v) as a function of u and v for a fixed order n. Figure 2(a) is
for n = 20 and figure 2(b) is for n = 40. These figures illustrate the general properties that
the amplitude of Jn(u, v) is most significant in the region v � −n/2 corresponding to z � n;
that Jn(u, v) exhibits almost-periodic oscillations in this region with variable amplitude; and that
there is a large domain with |Jn(u, v)| � 1 (the ‘null domain’) that increases in extent as n
increases. Despite the increasing size of the null domain, the amplitude of the oscillations in
Jn(u, v) decreases only very slowly as n increases.

amplitude of the oscillations up to u = n/4 ≈ |v|/2, and an almost perfect reproduction of
the phase and frequency of the oscillation. For this relatively small n value, the tunnelling
approximation gives more accurate results than the asymptotic approximation, also shown in
figure 3.

Proceeding to the larger value n = 40 (and |v| = 18) in figure 4, it is seen that the
approximation of equation (34) (tunnelling 1) again performs well in all respects up to about
u = n/4. This corresponds to the limitations expressed in equation (13).
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0 2 4 6 8

u

-0.2

-0.1

0.0

0.1

0.2

J n
(u

,v
)

Exact
Tunnelling 1 approx
Asymptotic approx n=20

Figure 3. A comparison of the tunnelling approximation for Jn(u, v) of equation (34), shown by
the dashed line, the asymptotic approximation (appendix) shown by the dot-dash line, and the exact
Jn(u, v) value shown by the full line. Here, n = 20, and |v| = 9, corresponding to |v| � n/2. The
range of u is the interval 0 � u � n/2. In principle, the tunnelling approximation is valid only for
the domain where u � |v|. It is seen that the tunnelling approximation retains its validity over the
larger-than-expected range of 0 � u � |v|/2 or 0 � u � n/4.

0 5 10 15

u

-0.10

-0.05

0.00

0.05

0.10

J n
(u

,v
)

Exact
Tunnelling 1 approx
Asymptotic approx

n=40

Figure 4. This is similar to figure 3, except that here n = 40 and |v| = 18 � n/2. The
agreement of the tunnelling 1 approximation (equation (34)) with the exact result is excellent
for the range 0 � u � n/4, which exceeds the expected range with u � |v|. Tunnelling and
asymptotic approximations are almost identical for small u, but differ in amplitude for larger u
values. Both approximations remain excellent in reproducing accurately the period and phasing of
the oscillations.

Figure 5 shows results for n = 100 and |v| = 45. At this large value of n, the asymptotic
approximation is virtually identical to the exact result, so that one curve is shown, with a single
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0 10 20 30 40

u

-0.04

-0.02

0.00

0.02

0.04

J n
(u

,v
)

Exact, Asymptotic approx
Tunnelling 1 approx
Tunnelling 2 approx

n=100

Figure 5. The relatively large value n = 100 is shown here. The asymptotic approximation is
almost identical to the exact result for this high order, as the legend entry indicates. Reproduction
of exact results by tunnelling 1 is again good up to about u = n/4, but now there is a clear failure to
reproduce amplitude, period, or phase for larger values of u that are plainly outside the tunnelling
domain. The second tunnelling approximation, tunnelling 2 (equation (47)), is also shown here.
Performance in matching the exact result is satisfactory for tunnelling 2, but not at the level of
tunnelling 1.

legend entry identifying it with both the exact and asymptotic forms. This gives an opportunity
to compare the two tunnelling forms of equations (34) and (47) without making the figure
excessively crowded. Agreement of tunnelling 1 with the exact value is, as in the other cases,
very good to u = n/4, and essentially perfect for u < n/8. Equation (47) (tunnelling 2) is
satisfactory, but not as accurate as tunnelling 1, as could be anticipated from the derivations.
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Appendix

The tunnelling approximation to Jn(u, v) given in equation (34) is a relatively simple algebraic
expression that computes very rapidly in a computational application. The asymptotic
form found in [4] is also a direct algebraic result, free of integrations, summations or any
mathematical form requiring iterations. Nevertheless, the form found here is so very much
simpler than that of [4], that is has been found to compute 5 to 10 times faster in practical
applications than the earlier result. For completeness, the earlier result is reproduced below,
with the explicit replacement of the parameter v by the quantity −z/2, as employed above
in equation (7). This earlier result was found by a procedure similar to the one used here,
except that the saddle-point locations were determined from the combined influence of all of
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the n, u, v parameters, rather than just n and v, as done in equation (14). The asymptotic form
for Jn(u, v) found in [4] is

Jn

(
u,− z

2

)
≈ (2z1/2)n

(2πQR)1/2

[(Q1/2 + U 1/2)1/2 cos χ − (Q1/2 − U 1/2)1/2 sin χ]

[(n + z + Q)1/2 + (n − 3z + Q)1/2]n

× exp

[
RU 1/2

2
+

3u(Q − U)1/2

4(2z)1/2

]

χ ≡ 3uU 1/2

4(2z)1/2
− R(Q − U)1/2

2
− n arccos

[
(n + z − Q)1/2

2z1/2

]

Q ≡ [(n + z)2 − u2]1/2

R ≡
(

n − z − u2

8z

)1/2

U ≡ 1

2
(n + z + Q) − u2

8z
.
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